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Bayes’ Nets: Big Picture 



Bayes’ Nets: Big Picture 

 Two problems with using full joint distribution tables 
as our probabilistic models: 
 Unless there are only a few variables, the joint is WAY too 

big to represent explicitly 
 Hard to learn (estimate) anything empirically about more 

than a few variables at a time 

 
 Bayes’ nets: a technique for describing complex joint 

distributions (models) using simple, local 
distributions (conditional probabilities) 
 More properly called graphical models 
 We describe how variables locally interact 
 Local interactions chain together to give global, indirect 

interactions 
 For about 10 min, we’ll be vague about how these 

interactions are specified 



Example Bayes’ Net: Insurance 



Example Bayes’ Net: Car 



Graphical Model Notation 

 
 Nodes: variables (with domains) 

 Can be assigned (observed) or unassigned 
(unobserved) 

 
 Arcs: interactions 

 Similar to CSP constraints 
 Indicate “direct influence” between variables 
 Formally: encode conditional independence 

(more later) 

 
 For now: imagine that arrows mean 

direct causation (in general, they don’t!) 
 



Example: Coin Flips 

 N independent coin flips 

 

 

 

 

 

 

 No interactions between variables: absolute independence 

 

 

 

 

 

X1 X2 Xn 



Example: Traffic 

 Variables: 
 R: It rains 

 T: There is traffic 

 

 Model 1: independence 

 

 
 

 

 

 
 

 Why is an agent using model 2 better? 
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T 
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 Model 2: rain causes traffic 

 



 Let’s build a causal graphical model! 

 Variables: 
 T: Traffic 

 R: It rains 

 L: Low pressure 

 D: Roof drips 

 B: Ballgame 

 C: Cavity 
 

Example: Traffic II 
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Example: Alarm Network 

 Variables: 
 B: Burglary 

 A: Alarm goes off 

 M: Mary calls 

 J: John calls 

 E: Earthquake! 

A 

E 

M J 

B 



Bayes’ Net Semantics 



Bayes’ Net Semantics 

 A set of nodes, one per variable X 
 

 

 A directed, acyclic graph 
 

 

 A conditional distribution for each node 
 

 A collection of distributions over X, one for each 
combination of parents’ values 
 
 
 

 CPT: conditional probability table 
 

 Description of a noisy “causal” process 
 

 

A1 

X 

An 

A Bayes net = Topology (graph) + Local Conditional Probabilities 



Probabilities in BNs 

 Bayes’ nets implicitly encode joint distributions 
 

 As a product of local conditional distributions 
 

 To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together: 
 
 
 

 Example: 
 
 

 

P(+cavity, +catch, -toothache)  = P(+cavity) P(+catch | +cavity) P(-toothache | +cavity) 



Probabilities in BNs 

 Why are we guaranteed that setting 
 

 

 
 

    results in a proper joint distribution?   
 

 

 Chain rule (valid for all distributions):  
 

 Assume conditional independences:  
 

       Consequence: 
 

 

 Not every BN can represent every joint distribution 
 

 The topology enforces certain conditional independencies 



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs. 

Example: Coin Flips 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

X1 X2 Xn 

P(h, h, t, h)   = P(X1) P(X2) P(X3) P(X4) = P(h) P(h) P(t) P(h) = 0.54 



Example: Traffic 

R 

T 

+r 1/4 

-r 3/4 

 +r +t 3/4 

-t 1/4 

-r +t 1/2 

-t 1/2 

P(+r, -t)   = P(+r) P(-t|+r) = 0.25 (0.25) 



Example: Alarm Network 

B:  
Burglary 

E: 
Earthquake 

A: 
Alarm 

J: 
John 
calls 

M: 
Mary 
calls 

B P(B) 

+b 0.001 

-b 0.999 

E P(E) 

+e 0.002 

-e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 

+b +e -a 0.05 

+b -e +a 0.94 

+b -e -a 0.06 

-b +e +a 0.29 

-b +e -a 0.71 

-b -e +a 0.001 

-b -e -a 0.999 

A J P(J|A) 

+a +j 0.9 

+a -j 0.1 

-a +j 0.05 

-a -j 0.95 

A M P(M|A) 

+a +m 0.7 

+a -m 0.3 

-a +m 0.01 

-a -m 0.99 

P(+b, -e, +a, +j +m)   = P(+b) P(-e) P(+a|+b,-e) P(+j|+a) P(+m|+a) 



Example: Traffic 

 Causal direction 

R 

T 

+r 1/4 

-r 3/4 

+r +t 3/4 

-t 1/4 

-r +t 1/2 

-t 1/2 

+r +t 3/16 

+r -t 1/16 

-r +t 6/16 

-r -t 6/16 



Example: Reverse Traffic 

 Reverse causality? 

T 

R 

+t 9/16 

-t 7/16 

+t +r 1/3 

-r 2/3 

-t +r 1/7 

-r 6/7 

+r +t 3/16 

+r -t 1/16 

-r +t 6/16 

-r -t 6/16 



Causality? 

 When Bayes’ nets reflect the true causal patterns: 
 

 Often simpler (nodes have fewer parents) 
 Often easier to think about 
 Often easier to elicit from experts 

 

 BNs need not actually be causal 
 

 Sometimes no causal net exists over the domain 
(especially if variables are missing) 

 E.g. consider the variables Traffic and Drips 
 End up with arrows that reflect correlation, not causation 

 

 What do the arrows really mean? 
 

 Topology may happen to encode causal structure 
 Topology really encodes conditional independence 



Bayes’ Nets 

 So far: how a Bayes’ net encodes a joint 
distribution 
 

 Next: how to answer queries about that 
distribution 
 Today:  

 First assembled BNs using an intuitive notion of 
conditional independence as causality 

 Then saw that key property is conditional independence 

 Main goal: answer queries about conditional 
independence and influence  
 

 After that: how to answer numerical queries 
(inference) 


